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Abstract

This paper takes a global look at a method of obtaining the elastic constants of the material of a
rectangular plate sample by explicitly inputting the geometrical shapes and frequencies of a sufficient
number of experimental vibration modes into a computational procedure that essentially compares
experimental frequencies with analytical predictions. There are many aspects of this method that have
important bearing on accuracy, ease of use and computational economy. The issues that arise include
vibration representation functions, selection of experimental mode shapes and frequencies for analysis,
goodness of experimental data, frequency sensitivity of the elastic constants, influence of diagonal modes
where relevant, plate thickness, plate aspect ratio, material orthotropy ratio and orientation of reinforcing
fibers in laminate composites. Whereas some of these factors have been discussed separately in other works,
this paper attempts bring the method completely into focus in one place, with an examination of all the
factors believed to influence the efficiency of the method.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Composite materials continue to be substituted for more traditional materials in many
important segments of the economy, such as the automotive, aerospace, defense and consumer
products industries. The main reason for this trend is the superiority of composite materials in the
see front matter r 2004 Elsevier Ltd. All rights reserved.
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areas of specific weight, specific stiffness, and corrosion resistance. Elastic properties, such as
stiffness, are of great importance in the engineering design of composite materials. The possibility
of tailoring the directional properties of composite materials by manufacturing design makes
them very desirable for many purposes, although the possible variation of properties with
direction also makes it much harder to identify or characterize a composite material with
unknown properties. It is recognized that the ‘‘unknown’’ material may simply be a quantity of
the material being quality tested to establish the true properties, as these may have drifted under
production conditions. It is also necessary to correctly identify and characterize composite
materials to facilitate optimal utilization. Several static methods [1,2] had been established for
obtaining the elastic properties of composite materials. Elastic properties are important for
composites because these materials are often designed based on stiffness. Disadvantages of static
characterization methods, as compared to dynamic methods include being slow, requiring many
samples (cut in different orientations) or, with newer methods utilizing single samples, requiring
several points of sampling, and being generally more expensive. Vibration-based methods tend to
be the least expensive dynamic methods presently utilized.
The vibration method of characterization is basically an optimal curve fitting of vibration test

data to some equations expressing the dynamics of the test sample. The use of vibration testing
to determine the elastic constants of materials, both isotropic and anisotropic, continues to be
widely researched [3–18]. Most of the works are based on thin plate theory with the finite element
method or Rayleigh–Ritz method with various forms of assumed field displacements in the
forward program.
Ayorinde and Gibson [9] developed a method founded on using Rayleigh’s method with the

classical lamination theory and a potential-energy-optimized few-modes representation of the
transverse displacement of a completely free plate, which representation is itself due to the work of
Dickinson and colleagues [19,20,30]. The approach is well documented [8–13], and uses a suitably
formed least-squares objective function in the inverse analysis. This approach does not require
one to sum over all modes from the fundamental, as is usual with the normal Rayleigh–Ritz and
similar methods, but one can specify by frequency and mode shape indices, the precise modes to
be included. The mode shape indices represent some function of the numbers of flexural half
waves in the orthogonal directions of the plate geometry. In this method, the frequency and mode
shape may thus be said to define each mode explicitly, as opposed to several methods where only
the frequency is utilized, and the mode identification for comparison is basically implicit. In such
methods, which may be described as explicit mode, for example, frequencies of the first so many
experimentally obtained modes are compared sequentially in a one-to-one correspondence with
those of the first equal number of computed modes, starting from the fundamental. It is absolutely
essential in such methods to ensure that no mode is missed out in the sequence on either side
(experiment and computation) because this can lead to seriously wrong and even absurd answers
[11,14]. With the explicit mode approach, the modes are uniquely identified, by frequency and
mode indices. Any number of modes considered adequate for a good solution can then be utilized,
chosen in any order, or without order, so long as each time, the experimental and analytical
frequencies are being compared for the same particular mode. The work was also customized
for an isotropic plate [8], and extended to six optimized modes [10]. A full analysis for a thick
orthotropic plate was also developed by Ayorinde [12], using a three-term approximation
of displacement.
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It is well known that the effects of transverse shear and rotary inertia are important in the
flexural vibration of thick plates, and thus, natural frequencies and elastic constants of a thick
plate cannot be obtained using the thin plate theory. Some study of flexural vibrations of a
rectangular thick plate [21–23] has been conducted, but for completely free edge conditions (which
are analytically more difficult, but can be well simulated in experimental tests) relatively few
approximate solutions based on thick plate theory and use of finite element methods or Rayleigh
methods exist. Both methods have been used [12,15] to obtain the elastic constants of thick plates.
Finite element approaches generally require longer solution times than Rayleigh methods,
especially with increasing mesh refinement.
The accuracy achieved using Rayleigh methods depends significantly on the goodness of

experimental data, as it is clear that poor test results promote mismatches between the analytically
predicted and test data. It is proposed in this paper to investigate the severity of the impact of such
deviations on the accuracy of predicted elastic constants. This has implications for the quality of
the predicted elastic constants, and also on the evaluation of structural integrity, on account of the
possible use [28,29] of the frequency values for damage assessment. This issue is treated in the
latter part of this paper.
Square, isotropic plates in transverse vibration manifest some coupled modes called ‘‘diagonal

modes’’ caused by the symmetry of boundary conditions and geometry about a diagonal
[20,24–27]. These modes comprise the sums and the differences of pure, indicially inverse modes
such as (i,j) and (j,i), and are therefore described as (i,j7j,i) modes. In the earlier works by
Ayorinde and colleagues, in order to avoid more complexity, the ‘‘diagonal modes’’ were skipped
from the displacement representations when square, isotropic or almost isotropic plates with free
boundary conditions were dealt with. However, in a more recent work [13], Ayorinde and Yu
analyzed these modes and included them in the identification problem. Diagonal modes are also
examined in this paper.
The issue of the sensitivity of these modes to the elastic constants will also be addressed in this

paper, since the accuracy of the elastic identification problem is very dependent on these
sensitivities. It should be noted that the diagonal modes are automatically included if one utilizes
the Rayleigh–Ritz method with a sufficient number of the lower terms in the series representation
of the deformation [6,19,26]. The diagonal modes are also automatically analyzed when the finite
element method is utilized. When using explicit mode methods like the improved Rayleigh method
introduced by Kim and Dickinson [20], however, the diagonal modes should be inserted into the
normal expression of displacement.
The use of sensitivity analysis in the identification of elastic constants of composite materials

was also contemplated by several workers [7,14,11,31–34]. It is logical that, on account of
inevitable variations between the predictions of the analytical model and the practical experiment,
consideration of the frequency sensitivities with respect to the elastic constants be linked to the
identification of elastic properties of materials, and should be helpful in selecting the best modes
for use in such an exercise.
In the present approach, the vibration frequencies are first estimated from the plate vibration

model and known elastic constants, in what is termed the ‘‘forward’’ problem. The degree of ease
of solution of this forward problem and the accuracy of its solution provide an indication of the
feasibility and relative ease of solution of the ‘‘inverse’’ problem, which is the identification of
elastic constants from experimental vibration data. Sensitivity analysis is included in both the
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‘‘forward’’ and ‘‘inverse’’ problems as well. The best (in the sense of having the highest
sensitivities) mode set for each elastic constant is automatically selected from the input
experimental vibration data.
The rectangular geometry plate sample is usually the easiest to prepare, and is therefore most

often utilized in the identification exercise. The completely free boundary condition is also
normally utilized because it is the most accurately realizable in practice. Accordingly, all our work
to date is based on these conditions.
In the authors’ work, modal frequency parameters and the frequency sensitivity parameters of

the elastic constants have been studied for fiber angle variations between 01 and 901. Completely
free rectangular plates of varying aspect ratios, fiber angle orientations, material orthotropy
ratios, and cross-ply lay-up are examined. These are important considerations in the
procedures currently widely applied for the elastic identification and damage analysis of
composite materials.
2. Analysis

2.1. General

The procedure followed by the authors in this study has been documented by Ayorinde and
colleagues [8–10,12]. For the sake of completeness, a basic description of the theory and procedure
is given here.
For a symmetrically laminated rectangular plate at equilibrium in the xy-plane, the free

transverse vibration equation may be written as

D11
q4w
qx4

þ 4D16
q4w
qx3qy

þ 2 D12 þ 2D66ð Þ
q4w

qx2qy2

þ 4D26
q4w
qxqy3

þ D22
q4x
qy4

þ r h
q2w
qt2

¼ 0; ð1Þ

where the plate transverse deflection is w(x,y,t), x and y are the orthogonal plate coordinates, Dij

is the standard bending stiffness of the classical lamination theory, r is the plate density, h is the
plate thickness and t represents time. For specially orthotropic plates, D16 ¼ D26 ¼ 0; D11 ¼ Dx;
D22 ¼ Dy; D12 ¼ nxy Dy and D66 ¼ Dxy; where Dx ¼ Exh3=12ð1� nxynyxÞ; Dy ¼ EyDx=Ex; Dxy ¼

h3Gxy=12: Since the isotropic plate is a particular case of the orthotropic plate, the equilibrium
equation for the isotropic plate is simpler and can be obtained from eq. (1) simply by replacing nxy

and nyx with n; Dx and Dy with D=Eh3/12(1�n2), and 2Dxy=2(3�n)D, where E is Young’s
modulus and n is the Poisson ratio.
For a typical diagonally symmetrical mode the expressions for transverse displacement, for the

six-mode representation, could be adequately represented by the expression

W x; yð Þ ¼ A yifj � cyifn � dymfj � eyifq � f ymfn � gypfj

� �n
� yjfi � cynfi � dyjfm � eyqfi � f ynfm � gyjfp

� �o
; ð2Þ
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where the mode shape of interest is the (i, j)th, A, c, d, e, f and g are constants, y is a function of x

and f is a function of y. yi(x) and fj(y) are the appropriate ith and jth beam mode shapes,
m ¼ i þ 1; p ¼ i þ 2; n ¼ j þ 1; q ¼ j þ 2 for dissimilar beam ends and m=i+2, p=i+4,
n=j+2, q=j+4 for the case where the conditions are the same at each end. It may be noted
that the items in the first small bracket on the right hand side of Eq. (2) constitute the expression
for the normal six modes. And the diagonal one-term displacement expression, suggested by
Warburton [25] and examined by Kim and Dickinson [20], is taken as a simple truncation of the
above by letting c=d=e=f=g=0. The corresponding three-mode expressions can be obtained
by setting e=f=g=0.
The maximum kinetic and potential energy expressions, respectively, are given by

Tmax ¼
1

2
rho2

Z a

0

Z b

0

W 2 dxdy (3)

and

Vmax ¼
1

2

Z a

0

Z b

0

Dx
q2W
qx2

� �2
þ 2nxyDy

q2W
qx2

q2W
qy2

þ Dy
q2W
qy

� �2
þ 4Dxy

q2W
qxqy

� �2( )
dxdy; (4)

where o is the frequency of vibration, and a and b are the plate side dimensions along the
x- and y-axis. After substituting the displacement expression (2) into Eqs. (3) and (4), we
may have

Tmax ¼ A2rho2 1þ c2 þ d2
þ e2 þ f 2 þ g2


 �
X iY j; (5)

Vmax ¼
A2Hp4

a2b2
Cij þ c2Cin þ d2Cmj þ e2Ciq þ f 2Cmn þ g2Cpj � 2cEij � 2dEji � 2eEij�
�

� 2fQji � 2gEji� þ 2cdFij þ 2ceEin þ 2cf Eni þ 2cgFi�j þ 2deFij� þ 2df Emi

þ2dgEjm þ 2ef F in þ 2egFi�j� þ 2fgFmj



X iY j; ð6Þ

where

X i ¼

Z a

0

y2i dx; Y j ¼

Z b

0

f2
j dy; H ¼ nxyDy þ 2Dxy (7)

and

Cij ¼ ðDx=HÞG4
i ðb

2=a2Þ þ ðDy=HÞG4
j ða

2=b2Þ þ 2½HiHj þ ðDxy=HÞðJiJj � HiHjÞ	;

Eij ¼ HiðKj þ LjÞ½2ðDxy=HÞ � 1	 þ 4ðDxy=HÞJiMj;

Fij ¼ � ðKiKj þ LiLjÞ½2ðDxy=HÞ � 1	 þ 4ðDxy=HÞMiMj;

Qij ¼ � ðKjLi þ KiLjÞ½2ðDxy=HÞ � 1	 þ 4ðDxy=HÞMiMj: ð8Þ

For the isotropic square plates, where diagonal modes would occur,

Cij ¼ Cij � C̄ij ; Eij ¼ Eij � Ēij ; Fij ¼ Fij � F̄ ij ; Qij ¼ Qij � Q̄ij ; (9212)
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where the coefficients under the bar are diagonal mode related terms. The coefficients are given by

Cij ¼ G4
i þ G4

j þ 2½nHiHj þ ð1� nÞJiJj	;

Eij ¼ �nðKj þ LjÞHi þ 2ð1� nÞJiMj;

Eji ¼ �nðKi þ LiÞHj þ 2ð1� nÞJjMi;

Fij ¼ nðKiKj þ LiLjÞ þ 2ð1� nÞMiMj;

Qij ¼ nðKjLi þ KiLjÞ þ 2ð1� nÞMiMj;

C̄ij ¼ nðK2
ij þ K2

jiÞ þ 2ð1� nÞM2
ij ;

Ēij ¼ nðKijKin þ KjiKniÞ þ 2ð1� nÞMijMin;

Ēji ¼ nðKjiKmj þ KijKmjÞ þ 2ð1� nÞMjiMmj;

F̄ ij ¼ nðKijKmn þ KjiKnmÞ þ 2ð1� nÞMijMmn;

Q̄ij ¼ nðKinKmj þ KniKjmÞ þ 2ð1� nÞMinMjm:

(13)

The integrals Gi, Hi, Ji, Ki, Li, Mi and Kij, Mij are based on normal-mode free–free beam
characteristic functions, and are given by

G4
i ¼ a4=p4

 � Z a

0

ðy00i Þ
2 dx

�Z a

0

y2i dx;

Hi ¼ � a2=p2

 � Z a

0

yiy
00
i dx

�Z a

0

y2i dx;

Ji ¼ a2=p2

 � Z a

0

ðy00i Þ
2 dx

�Z a

0

y2i dx;

Ki ¼ a2=p2

 � Z a

0

yiy
00
m dx

�Z a

0

y2i dx;

Li ¼ a2=p2

 � Z a

0

y00i ym dx

�Z a

0

y2i dx;

Mi ¼ a2=p2

 � Z a

0

y0iym dx

�Z a

0

y2i dx;

Kij ¼ a2=p2

 � Z a

0

yiy
00
j dx

�Z a

0

y2i dx;

Mij ¼ a2=p2

 � Z a

0

y0iy
0
j dx

�Z a

0

y2i dx: ð14Þ

In the above equations, m=i+2. The y-direction integrals, such as Gj, Hj, etc. are obtained by
substituting function f(y), indices j and n for y(x), i and m, respectively, in the previous equations.
The constants with the bar in Eq. (7) and the integrals Kij and Mij in Eq. (8) are caused by the
diagonal modes. The asterisked constants in Eq. (6), only for the case of the use of the six-mode
displacement expression, are the versions of the constants that utilize differently incremented
indices. These constants may be obtained by simply substituting i* or j* with i and j, respectively,
in Eq. (7), and the related integrals are typically given by

Ki� ¼ a2=p2

 � R a

0 yiy
00
p dx
.R a

0 y
2
i dx;

Li� ¼ a2=p2

 � R a

0 y
00
pyp dx
.R a

0 y
2
i dx;

Mi� ¼ a2=p2

 � R a

0 y
0
iy

0
p dx
.R a

0 y
2
i dx:

(15)
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Here, p=i+4. Constants c, d, e, f, and g are obtained by optimizing the potential energy with
respect to each one of them (i.e. qVmax=qz ¼ 0; for z=c, d, e, f, and g, respectively). This yields in
matrix form

½A	x ¼ b; (16)

where

½A	 ¼

Cin F ij Ein Eni F i�j

Cmj F ij� Emj Ejm

Ciq F in F i�j�

Sym Cmn Fmj

Cpj

2
6666664

3
7777775
; x ¼

c

d

e

f

g

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

and b ¼

Eij

Eij

Eij�

Qij

Eij�

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: (17)

When the maximum values of the kinetic and potential energies [Eqs. (5) and (6)] are equated
according to Rayleigh’s method, the explicit frequency equation is obtained as

rha2b2

p4
¼

H

o2ð1þ c2 þ d2
þ e2 þ f 2 þ g2Þ

� Cij

�
þ c2Cin þ d2Cmj þ e2Ciq þ f 2Cmn þ g2Cpj

� 2cEij � 2dEji � 2eEij� � 2fQij � 2gEji� þ 2cdFij þ 2ceEin þ 2cf Eni

þ2cgFi�j þ 2deFij� þ 2df Emj þ 2dgEjm þ 2ef F in þ 2egFi�j� þ 2fgFmj

�
; ð18Þ

where H ¼ nxyDy þ 2Dxy: As mentioned before, Cij ¼ Cij � C̄ij; Eij ¼ Eij � Ēij ; Fij ¼ Fij � F̄ ij

and Qij ¼ Qij � Q̄ij for the isotropic square plates in the above equations. It may be noted that the
procedure mentioned earlier for obtaining the one-term approximation essentially leads to setting
c=d=e=f=g=0 in Eqs. (16) and (18). Similarly, that for the three-term approximation leads to
setting e=f=g=0.
According to the reasoning advanced in Ref. [9], we also regard the above equation as involving

two functions, one of which (the left hand side of Eq. (18)) may be exactly evaluated from
geometrical and material density properties, and the other (the right hand side of Eq. (18), only
approximately, from measurements. This equation may be written as

f L ¼ f RðoÞ: (19)

Then the residual function, in dimensionless form, may be taken as

RQ ¼
X4
i¼1

f R

f L

� 1

� �2" #
i

: (20)

This residual function is used as the objective function. The summation is from 1 to 4 in this
particular equation because four frequency equations are required to obtain the four independent
elastic constants associated with the thin orthotropic plate. In general, the summation would be
done to the number of unknown elastic constants that are being sought. For the purely isotropic
plates, although two frequency equations are sufficient to obtain the only two unknown constants,
the full orthotropic approach is normally followed for the prediction of the elastic constants of
isotropic materials to avoid prior presumption of perfect isotropy, which may in fact not hold, for
a variety of reasons including manufacturing uncertainties.
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2.2. Thick plates

As the plates or panels being tested or analyzed get thicker, and through-the-thickness shear
and rotary inertia begin to be important, the Euler–Bernoulli model no longer suffices to
adequately describe motion. A significant problem is that the solution of the frequency equation,
which is now much more complicated on account of these factors now requires much more
computing resources. Since the full inverse problem requires numerous iterative trial solutions, the
computational resources required can quickly become very costly. In order to apply the outlined
characterization method to a thick plate with no significant increase in computer time and storage,
it is essential to develop methods of speeding up the process for such cases.
Starting with the three-mode expression, the transverse deflection W(x,y) of a plate whose mean

position lies wholly in the x–y plane may be rendered [20] as

W ijðx; yÞ ¼ AyiðxÞfjðyÞ � CyiðxÞfnðyÞ � DymðxÞfjðyÞ: (21)

The bending slopes of the plate along the x-direction cxðx; yÞ and y-direction cyðx; yÞ may be
respectively written as [12,35]

cxðx; yÞ ¼ BZiðxÞfjðyÞ � GZiðxÞfnðyÞ � PZmðxÞfjðyÞ;

cxðx; yÞ ¼ ZyiðxÞgjðyÞ � QyiðxÞgjðyÞ � VyiðxÞgjðyÞ;
(22)

where y(x) and f(y) are the deflections of beams lying wholly along the x- and y-directions
respectively, Z(x) is the bending slope of the beam when taken as a strip of the plate along the
x-axis; and g(y) is the similar slope along the y-direction.
From the foregoing, the potential energy expression becomes

PEmax ¼

ZZ
½D11fBZ0iðxÞfjðyÞ � GZ0iðxÞfnðyÞ � PZ0mðxÞfjðyÞg

2

þ D22fZyiðxÞg0jðyÞ � QyiðxÞg0nðyÞ � VymðxÞg0jðyÞg
2 þ 2D12fBZ0iðxÞfjðyÞ

� GZ0iðxÞfnðyÞ � PZ0mðxÞfjðyÞgfZyiðxÞg0iðyÞ � QyiðxÞg0nðyÞ

� VymðxÞg0jðyÞg þ D66fBZ0iðxÞfjðyÞ � GZ0iðxÞfnðyÞ � PZ0mðxÞfjðyÞ

þ ZyiðxÞg0jðyÞ � QymðxÞg0nðyÞ � VymðxÞg0jðyÞg þ A44fZyiðxÞgjðyÞ

� QyiðxÞgnðyÞ � VymðxÞgjðyÞ þ AyiðxÞf
0
jðyÞ � CyiðxÞf

0
nðyÞ

� DymðxÞf
0
jðyÞg

2 þ A55fBZiðxÞfjðyÞ � GZiðxÞfnðxÞ � PZmðxÞfjðyÞ

þ Ay0iðxÞfjðyÞ � Cy0iðxÞfnðyÞ � Dy0mðxÞfjðyÞg
2	dydx: ð23Þ

From an optimization of the potential energy, the nine undetermined constants A, B, C, D, G,
P, Z, Q and V may be obtained [11]. Also, the vibration frequency of the plate can then be
computed by substituting the nine constants into the expressions for P.E.max and K.E.max. Finally,
for each mode, the frequency is obtained using the Rayleigh formula, as

o2 ¼ P:E:max=K:E:max: (24)

The plate vibration is essentially constituted from the normal mode vibrations of beam strips
lying wholly along the two axial directions of the plate. The solution acceleration artifice which



ARTICLE IN PRESS

E.O. Ayorinde, L. Yu / Journal of Sound and Vibration 283 (2005) 243–262 251
was found successful, and was utilized in this work, consisted of setting up and using a thick beam
normal mode vibration library as an interpolation base, and then utilizing the beam normal
modes in synthesizing the plate vibration. Further information on the approach will be given later
in the paper.
2.3. Influence on frequency parameter

The modal frequency is quite important in the current approach to characterizing composite
materials, as most methods essentially compare a sequenced number of analytical frequencies to
their experimental counterparts. Errors in the values or sequences of these frequencies can
therefore seriously compromise the accuracy of results.
It is therefore useful to examine the effects of basic parameters like orthotropy ratio,

plate aspect ratio, and fiber orientation on modal frequency. Such an examination is made in
this paper. The frequency parameter is taken essentially as a scaled eigenvalue, and is here
defined as

Rij ¼ oija
2 r

E2h
3

� �1=2
; (25)

where oij is the frequency of the (i,j)th mode, a is the length of the major side of the sample (plate
aspect ratio is defined here as a/b, and is increased by shortening b), r is the mass density, h is the
sample thickness, and E2 is Young’s modulus in the transverse direction of the sample.
2.4. Sensitivity

The frequency sensitivity of the elastic constants varies widely across the vibration modes. This
is the reason why it has been observed [11,18] that different modal data combinations could give
very different predictions of the same elastic constants, from the totally unacceptable to the
virtually exact sometimes. The issue of sensitivity is therefore very important to the success of the
characterization method, and should be considered. Generally, sensitivity should be integrated
into the algorithm wherever feasible.
In order to find the influence of a utilized frequency on a derived elastic constant, we may use

the proportional change in the frequency for a given proportional change in the elastic constant as
the definition of the sensitivity of the mode, for example, for Ex; the sensitivity So=Ex

is
ðdo/oÞ=ðdEx=ExÞ: This may be rearranged as

So=Ex
¼

qo=qEx

o=Ex

: (26)

Similar expressions may be written for the other elastic constants. Since Eq. (12) gives the
frequency explicitly, it may be differentiated with respect to each elastic constant to obtain any
desired sensitivity. The sensitivity formulation concerning the diagonal modes may be obtained by
replacing the Cij, Eij, Fij, and Qij with Cij ¼ Cij � C̄ij; Eij ¼ Eij � Ēij ; Fij ¼ Fij � 0F̄ ij and Qij ¼

Qij � Q̄ij ; respectively, in that reference. The relative derivatives concerning the diagonal modes
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are obtained from these. For example, for Ex:

qC̄ij=qEx ¼ 2ð2M2
ij � K2

ij � K2
jiÞqðDxy=HÞ=qEx;

qĒij=qEx ¼ 2ð2MijMin � KijKin � KjiKniÞqðDxy=HÞ=qEx;

qC̄ij=qEx ¼ 2ð2MijMnm � KijKmn � KjiKnmÞqðDxy=HÞ=qEx: ð27Þ

In the case of the application of the three-term approximation, the constants c and d can be
expicitly solved for in terms of the coefficients Cij, Eij and Fij or Cij � C̄ij; Eij � Ēij ; and Fij �

F̄ ij; and thus their derivatives with respect to elastic constants can be obtained directly. When the
six-term displacement expression is used, however, the constants c, d, e, f and g are implicitly
determined by the matrix equation (16) and their derivatives, for example with respect to Ex, may
be obtained by solving a set of linear equations as in the following:

qx=qEx ¼ ½A	�1fqb=qEx � ðq½A	=qExÞxg: (28)

2.5. Goodness of experimental data

No matter how rigorous the analytical and computational formulations are, it may easily be
inferred that the practical limitation on accuracy is the goodness of the input experimental data.
Some investigation of how this works out is made in this paper. The effects of using input modal
data that are perturbed a little from the theoretically accurate values, and the degrees of deviation
of predicted elastic constants from the expected values are obtained and examined.
3. Procedure

The sensitivity analysis is included in both the ‘‘forward’’ and ‘‘inverse’’ problems. In this way
the best set of experimental modes is utilized to back out elastic constants based on the
experimental modal data.
The ‘‘inverse’’ problem of estimating the elastic constants from experimental modal data is then

solved with the displacement expression including the diagonal modes. The basic optimization
procedure described in the original work [9] is followed. The practical application of this method
may be done in a variety of ways. One may use the lowest several experimental frequencies, which
have the advantage of being more accurately obtainable in practice than the higher modes, as the
input data into the inverse program. From this scheme, the optimal value of each elastic constant
is then obtained with the least residual in the final search.
4. Results

The single-, three- and six-mode displacement expressions are utilized first in the ‘‘forward’’
problem of obtaining the natural frequencies of plates with given geometric and elastic constants,
and the possibility of having diagonal modes is included in the analysis. Frequencies are obtained
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by solving the frequency equation (18) for o with the appropriate modal shape indices. Various
samples were used in the experimental part of the work. These included isotropic square plates
made of aluminum and SMC materials and the orthotropic square plates made of E-glass/epoxy
and graphite/epoxy materials. The aluminum plate measured 254mm
 254mm
 3.16mm and
had a mass/unit volume density of 2770 kg/m3. The Sheet Molding Compound (SMC) had
randomly oriented chopped glass fibers in a polyester matrix and had a density of 1850 kg/m3 and
the SMC plate measured 306mm
 305.6mm
 2.682mm. The 12-ply graphite/epoxy plate
measured 254mm
 254mm
 1.483mm and had a density of 1540 kg/m3.
Table 1 compares the values of a dimensionless frequency parameter as obtained by Blevins [27]

and also by our method. Table 2 gives the sequences of the lowest four modes for a graphite/
Table 1

Dimensionless frequency parameter l2ij (n=0.3)

Mode indices

(2,2) (3,1�1,3) (1,3+3,1) (3,2) (2,3) (4,1)

Blevins’ dataa 13.49 19.79 24.43 35.02 35.02 61.53

Aluminum plate resultsb 13.61[0.9]c 19.81[0.1] 24.46[0.1] 35.54[1.5] 35.54[1.5] 61.63[0.2]

SMC plate resultsb 13.69[1.5] 19.79[0.0] 24.47[0.2] 35.67[1.8] 35.67[1.8] 61.63[0.2]

Note: l2ij ¼ oij � 2pa2 Eh3

12rð1�n2Þ

h i�1=2
:

aFrom Blevins [27].
bFrom the three-mode approximation with diagonal modes.
c[ ] contain the percent difference from the Blevins’ data.

Table 2

Plate modal sequences for graphite/epoxy

Lowest four-mode sequence

Rectangular plate

01 Fiber orientation

Plate aspect ratio

1 (2,2),(1,3),(2,3),(1,4)

2 (2,2)(3,1),(1,3),(3,2)

3 (2,2)(3,1),(3,2),(1,3)

4 (2,2)(3,1),(3,2),(4,1)

Square plate

Fiber orientation

01 (2,2),(1,3),(2,3),(1,4)

151 (2,2),(1,3),(2,3),(3,1)

301 (2,2),(1,3),(3,1),(2,3)

451 (2,2),(3,1),(1,3),(3,2)

601 (2,2),(3,1),(1,3),(3,2)

751 (2,2),(1,3),(3,2),(1,3)

901 (2,2),(3,1),(3,2),(4,1)

Note: Rectangular plate of sides a, b; aspect ratio, a/b, varied by changing b.



ARTICLE IN PRESS

Table 3

Natural frequencies of square SMC plate with completely free boundary conditions

Modal indices Natural frequencies (Hz)

Exptl. One-mode

with diag.

Three-mode

with diag.

Six-mode with

diag.

36-term R.-Ra 64-term R.-Ra

2,2 54.4[�2.1]b 58.59[5.5] 55.92[0.7] 55.65[0.20] 55.56[0.04] 55.54

3,1�1,3 78.8[�2.75] 81.73[�0.86] 81.35[0.40] 81.10[0.09] 81.22[0.23] 81.03

1,3+3,1 99.2[0.90] 99.02[0.71] 98.53[0.21] 98.40[0.08] 98.47[0.15] 98.32

2,3 138.4[�3.42] 149.69[4.46] 145.15[1.29] 144.82[1.06] 143.50[0.14] 143.30

3,2 138.4[�3.42] 149.69[4.46] 145.15[1.29] 144.82[1.06] 143.50[0.14] 143.30

1,4 242.4[�2.76] 250.17[0.36] 249.98[0.28] 249.83[0.22] 249.64[0.15] 249.27

4,1 242.4[�2.76] 250.17[0.36] 249.98[00.28] 249.83[0.22] 249.64[0.15] 249.27

3,3 254.0[�3.02] 276.23[5.47] 264.19[0.87] 262.86[0.37] 263.34[0.55] 261.90

2,4�4,2 263.4[�7.81] 285.86[0.06]] 285.83[0.05] 285.75[0.02] 285.77[0.03] 285.70

4,2+2,4 306.6[�2.72] 325.23[3.26] 315.58[0.20] 314.77[�0.06] 315.37[0.13] 314.96

aFrom Deobald and Gibson [6].
b[ ] contain % difference from 64-term Rayleigh–Ritz data
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epoxy plate as the plate aspect ratio is varied, and for a square planform, as the unidirectional
fiber orientation is varied. Table 3 shows the natural frequencies of a square SMC plate, using
different numbers of terms in approximating the displacement function. Fig. 1 shows the
frequency sensitivities of the elastic constants of a square SMC plate for several modes. Table 4
shows a typical result of the attempt to find a global fit for the plate frequencies based on material
and geometric parameters. Fig. 2 displays the computation times for the forward problem for
thick graphite/epoxy plates, comparing and contrasting the use of the interpolation library. Fig. 3
shows the effect of plate aspect ratio on the frequency parameter of glass/epoxy with 01 fiber
orientation. Fig. 4 shows the effect of fiber orientation on the frequency sensitivity of an elastic
constant, the Poisson’s ratio. Table 5 is a sample detail of the errors introduced into the extracted
elastic constants by using as input experimental frequencies that are in error to specified extents.
In this case, a mode, (4,1) has high sensitivity to the transverse Young’s modulus, Ey. The
contribution of this mode to the accuracy of the modulus Ey is therefore significant. It may
therefore be expected that if this mode should be incorrectly measured or input, the predicted
value of Ey would be correspondingly in error. Table 5 gives numerical values for this sample case.
5. Discussion

The data and diagrams in this paper are only a sample of the quantum of results obtained in the
authors’ research being overviewed, but an attempt is made to discuss the salient points of
important observations.
The values of a dimensionless frequency parameter as obtained by Blevins [27] are compared in

Table 1 to those obtained by our method for aluminum and the composite material SMC. The
good agreement suggests that our approach has high accuracy.
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Fig. 1. Frequency sensitivities of the square SMC plate (* diagonal-mode-related pure mode): Ex; Ey; Gxy;’ nxy
are engineering elastic constants.

Table 4

Plate frequency global fit data

FITTING OBJECTIVE: PLATE FREQUENCY MODE (2,2)

TOTAL FITTING POINTS=1000

FITTING BASIC FUNCTION IS:-

FREQ=A1+A2*X1+yA8*X7+A9*X1*X2+y+A29*X6*X7+A30*X1^2+y+A36*X7^2

FITTING VARIABLES: X1=Lx/Ly, X2=H/Ly, X3=Ex/Ey, X4=Gxy/Ey,

X5=Gyz/Ey, X6=PNUxy, X7=DENSITY RATIO

THE VARIABLES XI ARE NORMALIZED

XMAX(I)=4.000 0.2000 0.711 0.711 0.500 1.200

FITTING RESULT:

A1=0.52488 A2=�0.32651 A3=8.51919 A4=0.00104 A5=�0.87547 A6=�0.49550 A7=0.95742

A8=�0.41706 A9=�1.51789 A10=0.00105 A11=�0.14128 A12=�0.02755 A13=0.00021 A14=0.06151

A15=�0.02378 A16=2.02023 A17=0.21537 A18=�0.00077 A19=�0.82206 A20=�0.00334 A21=0.00175

A22=�0.00008 A23=0.00104 A24=0.09447 A25=0.00157 A26=�0.23158 A27=0.00049

A28=�0.01730 A29=�0.00033 A30=06160 A31=�6.80326 A32=�0.00013 A33=1.96536 A34=0.64197

A35=�1.59288 A36=0.13569

MAXIMUM RELATIVE ERROR (IMAX)=POINT 946; 2.216515071815996

SQUARE ERROR=6.578719490706451D-03
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The mode sequence is important for elastic characterization and damage assessment procedures
because they basically rely on comparisons of test and computed frequency parameters, with a
one-to-one correspondence from mode to mode. Table 2 shows plate aspect ratio and fiber
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Fig. 2. Time of forward problem—graphite/epoxy: , with library, , without library.

Fig. 3. Effect of aspect ratio on frequency parameter for glass/epoxy (angle=01): –~– mode (2,2); –’– mode (1,3);

–m– mode (2,3); –
 – mode (3,1); –n– mode (3,2); –K– mode (1,4); –’– mode (2,4); mode (3,3); mode (3,4);

mode (4,1).

E.O. Ayorinde, L. Yu / Journal of Sound and Vibration 283 (2005) 243–262256
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Fig. 4. Effect of fiber angular orientation on Poisson ratio sensitivity of glass/epoxy plate: –K– mode (3,1); –’– mode

(2,2); –m– mode (4,1); –
 – mode (3,2); –n– mode (4,2); –K– mode (5,1); —|— mode (5,2); mode (1,3); mode

(6,1); mode (2,3).

Table 5

Effect of experimental frequency error in high-sensitivity modes on predicted elastic constants

High-sensitivity mode for particular elastic constant % Deviation from static values prediction (modal

frequency in Hz)

Mode (1,4) for Ey 0% (166.1Hz) 6.5% (176.97Hz) 13.53% (188.33Hz)

Predicted elastic constant

Ex (Gpa) 124.3 124.7 124.9

Ey (Gpa) 10.22 11.09 (+8.5%) 11.90 (+16.4%)

Gxy (GPa) 6.358 6.373 6.357

nxy 0.21 0.20 0.21
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orientation affecting the mode sequence. The gradual progression in mode sequence rearrange-
ment from 01 to 451 is evident.
From the results, as exemplified by Fig. 1, although general rules do not yet appear inferrable, it

would seem that modes that involve more deformation along a particular axis, such as (3,1) and
(4,1) for the x-axis, tend to manifest higher frequency sensitivity of the relevant modulus, e.g. Ex.
The sensitivity values for Poisson’s ratio appear to be generally lower than for other elastic
constants. This is probably one of the reasons why this constant is usually the most difficult to
obtain accurately.
Table 3 shows the natural frequencies of a square SMC plate, under various approximations to

the displacement function. It shows that our optimized three-mode representation gives answers
of comparable accuracy to the 36-term Rayleigh–Ritz approach, while the optimized six-mode
results are comparable in accuracy to the 64-term Rayleigh–Ritz, which is taken as the benchmark
for all other solutions.
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Fig. 1 shows the values of the sensitivity parameter obtained in the ‘‘forward’’ problem for the
first ten modal frequencies inclusive of diagonal modes for the square SMC plate, as example. The
results for the pure modes (1,3), (3,1), (2,4) and (4,2), are also presented to facilitate comparisons.
It appears that the diagonal modes (1,373,1) and (2,474,2) are generally of higher sensitivities of
frequency to each elastic constant than the pure modes. Thus inclusion of the diagonal modes
would lead to better estimates of the elastic constants
Table 4 documents a typical attempt at global fit of the plate frequency data. The purpose of

this exercise was to obtain a much faster solution to the forward and inverse problems by possibly
generating interpolation tables for thick plate modal frequencies based on the geometric and
material parameters (material density, orthotropy ratio, geometry, shear stiffness ratios, etc.) of
the plate. The requirement for a method of speeding up the frequency computation for thick
plates arises from the naturally longer computation times involved in solving the more
complicated frequency equations for such plates. The table shows that this direct approach is not
convergent, and not feasible. It gave inaccurate answers, and the parameter space was too wide. A
solution method that breaks down the operation into a similar interpolation scheme for beam
strips and then synthesizes the plate vibrations from those of the beams lying along the two
orthogonal sides of the rectangular plate was however found to be quite successful, and a solution
library for thick beam vibration was developed and used to obtain plate vibration results. Use of
the library gives very accurate results for frequencies despite necessary interpolations and achieves
very significant computation time savings—about 75–85% at 0.15 thickness ratio, were achieved,
as shown in Fig. 2.
Plate aspect ratio is defined here as the ratio of the length of one side of the rectangular plate to

the other, where the other one is being shortened gradually as the ratio goes from unity to four in
the illustrative cases considered. This means that increasing aspect ratio essentially increases plate
stiffness, hence resulting in the higher frequencies, as seen in Fig. 3. This was shown in our work
to be typical, as it held true for the anisotropic materials considered (glass/epoxy and graphite/
epoxy) as well.
It was also found that the frequency sensitivity of Poisson’s ratio was about an order of

magnitude less for graphite/epoxy than for glass/epoxy. The orthotropy ratios of these two
materials are about 13.0 and 3.0, respectively. This probably suggests that it is more difficult to
obtain an accurate Poisson’s ratio for the higher orthotropy ratio, perhaps because of the
increased difficulty of accurately obtaining strain in the two major directions. Fig. 4 shows
maximum sensitivity of Poisson’s ratio at 451, in symmetrical profiles. This suggests that a 451
fiber-oriented sample would give better and more representative values of Poisson’s ratio than
other orientations, and this remains true as plate aspect ratio changes.
Further to the description in the results section, using the frequencies obtained and elastic

constants predicted by using the static values of the elastic constants for graphite/epoxy as input
to our characterization program, Table 5 shows that a 6.5% error in the Ey-sensitive frequency
(4,1) results in an 8.5% error in Ey, while a 13.5% deviation in the (4,1) frequency leads to a
16.4% deviation in the predicted Ey value. This can be shown for other elastic constants and
modal frequencies, and underscores the fact that even with a high fidelity characterization
method, the predicted results can only be as good as the quality of the experimental data would
permit. The referenced error data extracted from Table 5 can also be normalized with the input
error in the frequency to yield relative errors. This means the relative errors are 1.3% and 1.2%
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respectively. Frederiksen [14] plotted normalized parameter uncertainties for various plate
aspect ratios (length-to-breadth) for the four elastic constants E1, E2, G12, and n12, using both
the classical plate theory and a higher-order theory. For unity aspect ratio as in the present
work, the normalized relative errors for the thin plate (using his Fig. 3) are about 0.8%, 1.1%,
1.6%, and 9% for E1, E2, G12, and n12, respectively, and for the thick plate (using his Fig. 8)
they are about 1.4%, 1.4%, 1.6%, and 10%, respectively. The present results compare
favorably for the case considered. Grediac and his colleagues have steadily developed an approach
christened the virtual fields method, which essentially utilizes the principle of virtual work
to set up equations that link measured and desired quantities. The method has been applied
to both static and dynamic test exercises. Grediac and Paris [16,36] utilized a direct identification
method to obtain simulation [16] and experimental [36] results. They obtained bending stiffnesses,
Dij. For unidirectional graphite/epoxy, the simulation results for an input perturbation of
5–10% showed output modulus errors from less than 0.1% to about 3.8%. The actual
experimental results showed modulus errors in the Dij values from about 3% to 33%.
This last value was for D12, which represents Poisson’s ratio. Grediac [43] also presented a method
for the identification of invariant parameters governing the bending of anisotropic plates.
In a numerical simulation, he perturbed the inputs up to 10% and obtained output errors
ranging from 0.2% to 28.8%. Bledzki et al. [37] presented a similar direct method based on
experimental design. For polyethylene-sized E-glass/epoxy composite, the percentage differences
of the stiffness values they obtained by vibration over the static tensile values could be evaluated
as–1.7% for E1 and 43.1% for E2. Grediac and co-workers also applied the virtual fields
method to thick laminated tubes [38], and shear specimens [39]. In the latter work they observed
that the transverse component stiffness Qxz was more sensitive to strain measurement errors
than others and that the accuracy of the method depended on the choice of fields and the
numerical conditioning of the A matrix. They also concluded that, for the optical data acquisition
method, which is one of the most practical for capturing large strain fields as required by
this approach, errors due to strain measurement and evaluation, and coordinate errors of
mis-centering the CCD camera do affect the results. Their simulations of 5% and 10%
strain errors resulted in component stiffness error magnitudes of 1.3% and 2.5%, respectively.
Their simulated coordinate mis-centering errors of 1 and 2 pixels, respectively, yielded component
stiffness error magnitudes up to 4.2%. However, for Qxz, which governs the Poisson’s ratio,
errors of 29% and 1800%, respectively, were recorded at eccentricities of 5 and 10 pixels,
respectively.
Hwang and Chang [40] used a combination of commercial finite element and design of

experiment computer programs to extract elastic constants. They considered several plates of
varying rectangular plan dimensions. For carbon/epoxy plates, the percentage modulus deviations
could be computed from their data to be 0.2–6.2% for E1, 1.7–6.6% for E2, 3.2–12% for G12, and
8.7–52% for n12. Grediac and co-workers further refined the virtual fields method for special
fields, setting out the principles [41] and applying the method to in-plane problems [42]. The
optimized special fields were chosen based on a minimization of a root sum square of the
component stiffnesses Qij. For a test material, the modulus errors in the component stiffnesses
ranged from zero to 9.7%.
From the diversity of results referenced, it could be seen that the results of the present work are

very comparable with others.
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6. Conclusion

The main factors affecting the use of a vibration-based method for elastic identification have
been discussed. The basic analytical foundation of the method has been given, and the major
factors that have bearing on the accuracy, economy and ease of use of the method have been
identified as the inclusion or otherwise of the diagonal modes, where applicable, the frequency
sensitivities of the elastic constants, the use of some effective scheme, such as a beam vibration
interpolation library developed in our work, to expedite thick plate vibration analysis, as well as
the plate aspect ratio, orthotropy ratio and reinforcing fiber orientation , as well as the goodness
of the experimental data which serves as input to the identification or characterization procedure.
A basic insight into how these important factors could affect the efficiency of the type of elastic
characterization approach has been described here. Since most elastic characterization methods
are posed as inverse problems that essentially match analytical modal data with their experimental
counterparts, the factors highlighted in this paper should be applicable to a generic family of these
methods.
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